1intro=195oHSoHSoHSoHSoHSoHSoHSoHS442oHSoHSoHSoHSoHSoHSoHSoHS3oHSBDoHSoHSBDoHSoHSBDoHSoHSBDoHS4oHSBDoHSoHSBDoHSoHSBDoHSoHSBDoHS5riffCC2BDxHxHSxH6xHBDxHxHSBDxH7xHBDxHxHSxH8xHBDxHxHSBDxH9CC2BDxHxHSxH10xHBDxHxHSxH11xHBDxHBDxHSxHBD12xHBDxHBDBDxHSBD13CC2BDoHoHSoH14oHBDoHSoHoHBD15oHBDoHoHSoH16oHBDoHoHSBD17CC2BDoHoHSoH18oHBDoHoHSoH19oHBDoHBDoHSoHBD20oHBDoHBDoHSBDoH21pre-chorusoHSBDoHSoHSBDoHSoHSBDoHSoHSBDoHS22oHSBDoHSoHSBDoHSoHSBDoHSoHSBDoHS23oHSBDoHSBDoHSBDoHSBDoHS24BDoHSBDoHSoHSBDoHSBD25chorusCC2SBDCC2SBDCC2SBDCC2SBDCC2S26BDCC2SBDCC2SCC2SBDCC2SBD27CC2SBDCC2SBDCC2SBDCC2SBDCC2S28BDCC2SBDCC2SCC2SBDCC2SBD29CC2SBDCC2SBDCC2SBDCC2SBDCC2S30BDCC2SBDCC2SCC2SBDCC2SBD31CC2SBDCC2SBDCC2SBDCC2SBDCC2S32BDCC2SBDCC2SCC2SBDCC2SBD33CC2SBDCC2SBDCC2SBDCC2SBDCC2S34BDCC2SBDCC2SCC2SBDCC2SBD35CC2SBDCC2SBDCC2SBDCC2SBDCC2S36BDCC2SBDCC2SCC2SBDCC2SBD37CC2SBDCC2SBDCC2SBDCC2SBDCC2S38BDCC2SBDCC2SCC2SBDCC2SBD39CC2SBDCC2SBDCC2SBDCC2SBDCC2S40BDCC2SBDCC2SCC2SBDCC2SBD41math-bridgeCC1BDCC1BDSoHLTCC1BD42CC1BDBDBDSSMTMTLT43FTFToHBDoHBDSFTCC2BD44CC2BDCC2BDSCC2BD45CC1BDCC1BDSoHLTCC1BD46CC1BDBDBDSSMTMTLT47FTFToHBDoHBDSFTCC2BD48CC2BDCC2BDSCC2BD49CC1BDCC1BDSoHLTCC1BD50CC1BDBDBDSSMTMTLT51FTFToHBDoHBDSFTCC2BD52CC2BDCC2BDSCC2BD53re-introoHSoHSoHSoHSoHSoHSoHSoHS54oHSoHSoHSoHSoHSoHSoHSoHS55oHSBDoHSoHSBDoHSoHSBDoHSoHSBDoHS56oHSBDoHSoHSBDoHSoHSBDoHSoHSBDoHS57riffCC2BDxHxHSxH58xHBDxHxHSBDxH59xHBDxHxHSxH60xHBDxHxHSBDxH61CC2BDxHxHSxH62xHBDxHxHSxH63xHBDxHBDxHSxHBD64xHBDxHBDBDxHSBD65CC2BDoHoHSoH66oHBDoHSoHoHBD67oHBDoHoHSoH68oHBDoHoHSBD69CC2BDoHoHSoH70oHBDoHoHSoH71oHBDoHBDoHSoHBD72oHBDoHBDoHSBDoH73slow-bridgeCC2BD7475767778798081828384858687888990919293949596979899100101102103104105buildup106107108109110111112113CC2BDBDBDBD114BDBDBDMTBDMTLTLT115FTBDBDBDBD116BDSBDMTBDLTLTBDLTFTFT117FTBDBDBDSBD118BDBDBDMTBDMTLTLT119FTBDBDBDBD120BD121chorusCC2SBDCC2SBDCC2SBDCC2SBDCC2S122BDCC2SBDCC2SCC2SBDCC2SBD123CC2SBDCC2SBDCC2SBDCC2SBDCC2S124BDCC2SBDCC2SCC2SBDCC2SBD125CC2SBDCC2SBDCC2SBDCC2SBDCC2S126BDCC2SBDCC2SCC2SBDCC2SBD127CC2SBDCC2SBDCC2SBDCC2SBDCC2S128BDCC2SBDCC2SCC2SBDCC2SBD129CC2SBDCC2SBDCC2SBDCC2SBDCC2S130BDCC2SBDCC2SCC2SBDCC2SBD131CC2SBDCC2SBDCC2SBDCC2SBDCC2S132BDCC2SBDCC2SCC2SBDCC2SBD133CC2SBDCC2SBDCC2SBDCC2SBDCC2S134BDCC2SBDCC2SCC2SBDCC2SBD135CC2SBDCC2SBDCC2SBDCC2SBDCC2S136BDCC2SBDCC2SCC2SBDCC2SBD137CC2SBDCC2SBDCC2SBDCC2SBDCC2S138BDCC2SBDCC2SCC2SBDCC2SBD139CC2SBDCC2SBDCC2SBDCC2SBDCC2S140BDCC2SBDCC2SCC2SBDCC2SBD141CC2SBDCC2SBDCC2SBDCC2SBDCC2S142BDCC2SBDCC2SCC2SBDCC2SBD143CC2SBDCC2SBDCC2SBDCC2SBDCC2S144BDCC2SBDCC2SCC2SBDCC2SBD145CC2SBDCC2SBDCC2SBDCC2SBDCC2S146BDCC2SBDCC2SCC2SBDCC2SBD147CC2SBDCC2SBDCC2SBDCC2SBDCC2S148BDCC2SBDCC2SCC2SBDCC2SBD149CC2SBDCC2SBDCC2SBDCC2SBDCC2S150BDCC2SBDCC2SCC2SBDCC2SBD151CC2SBDCC2SBDCC2SBDCC2SBDCC2S152BDCC2SBDCC2SCC2SBDCC2SBD153math-bridgeCC1BDCC1BDSoHLTCC1BD154CC1BDBDBDSSMTMTLT155FTFToHBDoHBDSFTCC2BD156CC2BDCC2BDSCC2BD157CC1BDCC1BDSoHLTCC1BD158CC1BDBDBDSSMTMTLT159FTFToHBDoHBDSFTCC2BD160CC2BDCC2BDSCC2BD161CC1BDCC1BDSoHLTCC1BD162CC1BDBDBDSSMTMTLT163FTFToHBDoHBDSFTCC2BD164CC2BDCC2BDSCC2BD165CC1BDCC1BDSoHLTCC1BD166CC1BDBDBDSSMTMTLT167FTFToHBDoHBDSFTCC2BD168CC2BDCC2BDSCC2BD169outrochorusCC1CC2BDCC2BDCC2SBDCC2BD170CC2BDCC2BDCC2SSCC2BD171CC2BDCC2BDCC2SBDCC2BD172CC2BDCC2BDSSCC2SCBD173CC1CC2BDCC2BDCC2SBDCC2BD174CC2BDCC2BDCC2SSCC2BD175CC2BDCC2BDCC2SBDCC2BD176CC2BDCC2BDSSCC2SCBD177CC1CC2BDCC2BDCC2SBDCC2BD178CC2BDCC2BDCC2SSCC2BD179CC2BDCC2BDCC2SBDCC2BD180CC2BDCC2BDSSCC2SCBD181CC1CC2BDCC2BDCC2SBDCC2BD182CC2BDCC2BDCC2SSCC2BD183CC2BDCC2BDCC2SBDCC2BD184CC2BDCC2BDSSCC2SCBD185outroCC2BD186187188189190191192193194195196197198199200201oh!202203204205206207208209210211212213214215216217