dAFCGD1A=248442345678910111213141516171819202122232425262728293031323334351536B97979710897753797108970380097979710897001311390131100131104097979710897754197108977542004242007543007504442424297450075007546979797108977547971089704897979710897131149131114121311050141213111412131116141614064511412131114121311171516140521412131114121311108445310813111085442420075P. M.55757505642424297570075007500P. M.P. M.P. M.P. M.P. M.P. M.P. M.58C00310420595304200426000420530P. M.P. M.P. M.616453426453362005306463007506453P. M.P. M.P. M.640064075651311008653366877787787787767877988988688778778778776987787798898837087778778778777187798898872111191111911912101212101210let ring731311131112111113111412141274D151315131513151311986751190042420let ring7600310003100770310031427815131513151315131191513let ringlet ring791816151318160800013111311131113111311131133810013111311131113111311131133let ring8212101210121012108612108386317542840053535353535333let ring85005353535353386646464641087587007575P. M.P. M.8886868686119151389121010121090E333111222222P. M.P. M.P. M.P. M.911333104492220435553336934777646465P. M.P. M.P. M.P. M.9453334444953355522666396555648886669P. M.97871010109797959886667777688832998666777768881008886667777888810188866672210277768886661039997599975999759997510499975999759997599975105999759997599975999759997599975106979795P. M.P. M.P. M.1078666777744108688810101099999778P. M.P. M.P. M.P. M.P. M.P. M.P. M.P. M.11088799661111010108899983311210107111111991033P. M.P. M.P. M.P. M.P. M.P. M.P. M.P. M.113101091111812121210101188114111110121291313813148P. M.P. M.P. M.P. M.P. M.P. M.115141481414814148141481161414814148121291411715141415141514141514441181514141516151615119151414151415141412015141514141615151615153121151414151415141412215141514141615161531231715141715141514017151417151433124151414151416151516151531251514141401715141414017151414033126171514140171514141615151615153127151414141514141412815141414131315141416151516151531291615151516151515130171616131F119119119131113200860064P. M.let ring1331347646424331351191191191191311136001614001311let ringP. M.13700001389767646331391614161416141816let ring1400013110011914109000001425754542023let ring143161401614161416140181614400119008614508600146911979750731473142031421486404264421496407542647564064150647506475441519775075152970759710897064153G108750108751081311074154108750108751412131101551087501087510813110156108750108751412131101571513121001513121015131816015815131210015131210191701816015988655308865538861111901608865530886553121210111190161426404264756442016242750427597750163429704297010897042164421080421081210108420165420121004201210016140121000166420121004201210013110121000167420121004201210016140121000168420121004201210013110121000169H131142424234170131113111311424242441711311131113114242421721311131113114242421731412141214125353531741412141214125353531751412141214125353531761412141214125353531771513151315136464641781513151315136464641791513151315136464641801513151315136464641513151354181I1614161416141614(16)(14)16141614(16)(14)44182(16)(14)16141614bar flutter (snap bar)(16)(14)(16)(14)1831614161416141614(16)(14)16141614(16)(14)184(16)(14)16141614bar flutter (snap bar)(16)(14)(16)(14)1851513151315131513(15)(13)15131513(15)(13)186(15)(13)15131513bar flutter (snap bar)(15)(13)(15)(13)1871513151315131513(15)(13)15131513(15)(13)188(15)(13)15131513bar flutter (snap bar)(15)(13)(15)(13)1891412141214121412(14)(12)14121412(14)(12)190(14)(12)14121412bar flutter (snap bar)(14)(12)(14)(12)1911412141214121412(14)(12)14121412(14)(12)192(14)(12)14121412bar flutter (snap bar)(14)(12)(14)(12)193001311001311194(0)(0)(13)(11)00195001311131113110013111311131119613110019700131113111311001311131113111981311001990200P. M.P. M.P. M.P. M.201J44424222535552023533354666P. M.P. M.P. M.P. M.2034446577755572046888886688668520579999777P. M.P. M.206810101088888820711109111111999/w wah-wah011208131211121212121212101010131313131313111111143209K15141414151414141514210141416151615152111514141415141414151432121514141615161515321315141415141415141415141415141415141415141415141415141415141415141415141433332141514141615161516151532151514141413151415141315141414133321615141414131514151615161515321716151516151516151516151516151516151516151516151516151516151516151516151533332181615151615151615151615151615151615151615151615151615151615151615151615153333219161515161515161515161515161515161515161515161515161515161515161515161515333322016151516151516151516151516151516151516151533221Lwah-wah off979710897752229710897022397971089797001311224001311141200131102250970970108970970752260971089775let ringlet ringlet ringlet ring22700424200424200752287500750750075229424242004242424297230750075750075757575231/w wah-wah979797108979797007523200970010800970233979797108979797001311234001311141200131113112351412131113111412131113110016140016140642361412131113111412131113110017150016141311let ringlet ringlet ring23714121311131114121311131113111084423810810813111082390042420042420075let ring240000075007500750075752410042420042424297242750075750075let ringlet ringlet ringlet ring243M001412131113110014121311131100161400161406424400141213111311001412131113110017150016141311let ringlet ring24517151614161416140014121412001412141200131102461715161416141614141200141200141201190011900131124717151614161416141412001412001412141200131101311248141213111311131100119011900119970097970249151316140151316140682501513161401513161402511513161401513161402521513161401513161402531513161401513161401614782541917161419171614682551917161419171614256191716141917161425719171614191716142581917161419171614191716149825900191768260001917261001917262001917263002018264N/w random atonal pandemonium guitar…265266267268…sounds269270271272273Ouse Whammy pedal for slide in's and out's2019192019192019442741921202021202027520191920191920193276201919212020212020327720191920191920191920191920191920191933278201919201919201919212020193279212020212020212020212020212020212020280212020212020212020281212020212020212020212020212020212020282212020212020212020283212020212020212020212020284212020212020212020212020285212020212020212020212020212020212020286212020212020212020287rit.=180212020(21)(20)(20)288201919(20)(19)(19)289191818(19)(18)(18)290181717(18)(17)(17)let ring291=124171616(17)(16)(16)292161515(16)(15)(15)293151414151415294151415142951514296151414297(15)(14)(14)298P The God Eaterstempo 66=66642994430064301443023033043053063073083093103113122431344314343154431631734318243193432032144Track can be converted to a standard tuning (R)